
 

1 
 

Supplemental Materials 

 

Achromatic On-Chip Focusing of Graphene Plasmons for Spatial Inversions of Broadband 

Digital Optical Signals 

 

Zhiyong Wu1,2 and Zhengji Xu1,2* 

1School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China; 

2Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, 

Sun Yat-sen University, Zhuhai 519082, China. 

*Corresponding author: xuzhj27@mail.sysu.edu.cn 

 

  



 

2 
 

Section 1: Dispersion equations of the AGPPs supported by the GIWAL in a single unit cell 

To understand the design principle of the graded index waveguide array lens (GIWAL), we need to 

determine the effective refractive index of each unit cell in the GIWAL for the propagation of the 

AGPPs. For this purpose, we first theoretically analyze mode properties of the AGPPs supported by 

the GIWAL in each unit cell by solving the corresponding dispersion equation. Figure S1a shows an 

enlarged unit cell structure of the GIWAL. According to the idea of the effective index method,[45-47] 

this unit cell structure is divided into two parts: regions I and II (Figure S1a). Treating the widths of 

both regions I and II as infinite along the x-direction, we first calculate the effective wave-vector of 

the AGPPs propagating along the z-direction in each region. 

Both regions I and II correspond to three-medium slab waveguides with a surface conductivity, as 

shown in Figure S1b. Since the AGPPs are transverse magnetic (TM) modes with magnetic field 

component mainly along the x-axis, the magnetic field component of the AGPPs propagating along the 

z-direction can be expressed as: 
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, (A1) 

where kj
2 = q2 – εjk0

2 (j = 1, 2, or 3), εj is the relative permittivity of the corresponding medium in 

Figure S1b, ω is the angular frequency of the incident light, and d is the thickness of the intermediate 

medium. q and k0 are the effective wave-vector of the TM wave propagating along the z-direction and 

the wavenumber of the incident light in vacuum, respectively. A, B, C, and D are the four pending 

mode coefficients. 

According to Maxwell’s equations and the expression of Hx, the electric field component of the TM 

wave along the z-axis can be further solved as: 
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where ε0 is the permittivity in vacuum. Since the surface conductivity σg induces a surface current at y 
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= d/2, the boundary conditions satisfied by the TM mode in the waveguide become: 
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Substituting equations A1 and A2 into A3 yields the following eigen equation: 
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The q obtained by taking ε2 in equation A4 as ε21 or ε22 represents the effective propagating wave-

vector of the AGPPs in regions I or II, denoted as q1 or q2, respectively. 

 

Figure S1. Cross-sections of the enlarged unit cell structure of the GIWAL (a), the three-medium slab 

waveguide with a surface conductivity (b), and the periodic two-medium slab waveguide (c), 

respectively. (d) The normalized electric field |E|2 of the AGPP modes on the cross-section of a unit 

cell of the GIWAL. Green arrows represent the polarization direction of the electric field of the AGPPs. 

 

Now, the regions I and II could be regarded as homogeneous media of widths a and Λ − a, 

respectively, characterized by the effective wave-vectors q1 and q2, respectively. Furthermore, the TM 

guided mode mentioned above becomes the transverse electric (TE) mode propagating along the z-

direction for this “new” structure since its electric field component lies mainly on the y-axis. Because 

the effective refractive index between adjacent unit cells of the GIWAL does not differ much, the 

GIWAL can be considered locally periodic. Thus, one unit cell in the GIWAL corresponds to one period 

in a periodic two-medium slab waveguide.[47] 

The cross-section of the periodic two-medium slab waveguide is shown in Figure S1c. In the 
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waveguide, the electric field component of the TE wave propagating along the z-direction lies on the 

y-axis. The electric field in the s-th unit cell can be expressed as: 
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where pm
2 = qm

2 – kz
2 (m = 1 or 2). kz = kzr + ikzi is the propagation constant of the AGPPs along the z-

direction in a unit cell of the GIWAL. As, Bs, Cs, and Ds are undetermined mode coefficients, linked by 

boundary conditions. 

According to Maxwell’s equations and the expression of Ey, the magnetic field component of the 

TE wave along the z-axis in the s-th unit cell can be further solved as: 
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where μ0 is the permeability in vacuum. Since Ey and Hz are continuous at the boundaries x = (s − 1)Λ 

and (s − 1)Λ + a, we get: 
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In addition, the periodic two-medium slab waveguide is similar to a one-dimensional crystal 

extending along the x-direction, and the periodicity conditions for the supported Bloch waves are:[47] 
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where kx represents the Bloch wavenumber along the x-direction, which depends on the incident angle 

of light. Substituting equation A8 into A7 derives the dispersion equation of the AGPPs propagating 

along the z-axis in the whole unit cell as: 
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The incident light is coupled into the GIWAL along the z-axis, so the Bloch wavenumber along the 

x-direction kx is zero. kz can be calculated quantificationally by solving equations A4 and A9 step by 

step. Then, the effective refractive index and the propagation length of the AGPPs in a unit cell are 
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defined as neff = kzr/k0 and L = 1/(2kzi), respectively. 

As a visual guide, the electric field distribution of the AGPPs on the cross-section of a unit cell of 

the GIWAL is shown in Figure S1d. Consistent with the discussion in the manuscript, the AGPP modes 

have high field confinement, and almost all electromagnetic energy is confined at the dielectric grating 

between the graphene and metallic substrate. The polarization direction of the electric field represented 

by the green arrow in Figure S1d indicates that the electric field of the AGPP modes mainly lies on the 

y-axis. 

 

 

 

Section 2: The effect of different parameters on the trend of neff versus a 

The increased relaxation rate of graphene results in a greater loss and thus a smaller propagation 

length of the AGPPs, but does not affect neff, as shown in Figures S2a and S2b. Furthermore, decreasing 

the chemical potential of graphene or the thickness of the dielectric grating leads to a larger neff, as 

shown in Figures S2c and S2d, but the trend of neff versus a is independent of the chemical potential 

of graphene and the thickness of the dielectric grating, as shown by normalized neff in Figures S2c and 

S2d. This property means that changes in the chemical potential of graphene and the thickness of the 

dielectric grating do not affect the focus of the on-chip focusing of the AGPPs in the GIWAL. 

 

Figure S2. Dependences of the effective refractive index (a) and the propagation length (b) of the 

AGPPs on the width of the dielectric strip for different relaxation rates of graphene. Dependences of 

the effective refractive index of the AGPPs on the width of the dielectric strip for different chemical 

potentials of graphene (c) and different thicknesses of the dielectric grating (d), respectively. The 

frequency of the incident light is f = 15 THz. 

 

As shown in Figure S3, as the relative permittivity or the period of the dielectric grating increases, 

the wavelength-independent trend of neff versus a is broken negligibly. 
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Figure S3. Dependences of the effective refractive index of the AGPPs on the width of the dielectric 

strip for different frequencies of the incident light under ε21 = 4 (a), ε21 = 6.25 (b), Λ = 100 nm (c), and 

Λ = 200 nm (d), respectively. 

 

 

 

Section 3: Coupling the incident light to the AGPP modes 

We use a coupling grating to couple the incident light to the AGPP modes, which then propagate 

through the GIWAL along the z-direction and achieve on-chip focusing in the GIWAL, as shown in 

Figure S4a. We analyze the coupling details quantitatively here. 

The propagation constant pc of the AGPPs supported by the coupling grating and propagating along 

the z-direction can be calculated from equation A4: 
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where kj
2 = pc

2 – εjk0
2 (j = 1, 2, or 3). For the AGPPs propagating along the z-direction, the relative 

permittivity of the dielectric grating in the coupling grating can be equivalent to ε2 = fcε21 + (1 – fc)ε22,[51] 

where fc = wc/Λc is the filling factor, and wc and Λc are the width of the dielectric strip and the period 

of the dielectric grating in the coupling grating, respectively. Here, we consider fc as 0.5. 
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In addition, the coupling grating can diffract the incident light that strikes perpendicular to the 

graphene surface along the y-direction. The wave-vector of the m-th order diffracted light in the z-

direction is kzc, m = 2mπ/Λc (m = 1, 2, 3, …). We only consider the first order diffracted light here, i.e., 

m = 1. When the phase matching condition Re(pc) = 2π/Λc is satisfied, the incident light can be 

efficiently coupled to the AGPP mode. 

 

Figure S4. (a) Schematic representation of coupling the incident light to the AGPP mode. (b-d) Top 

views of the dielectric grating in the coupling grating on the y = 0 plane for the extended grating (b), 

the local grating (c), and the digitally encoded grating (d), respectively. 

 

(1) Numerical simulations of Figure 2e and the middle panel of Figure 3a in the main manuscript 

adopt the coupling grating of Figure S4b. The frequency of the incident light is f =15 THz, and the 

chemical potential of graphene is μc = 0.5 eV. Re(pc) = 1.12 × 107 m-1 from equation C1, so Λc is 

designed to be 561 nm. 

(2) Numerical simulations of the lower panel of Figure 3a in the main manuscript adopt the coupling 

grating of Figure S4b. The frequency of the incident light is f =10 THz. Re(pc) = 1.12 × 107 m-1 is 

required to maintain the structure of the coupling grating, so the chemical potential of graphene needs 

to be electrically tuned to 0.22 eV according to equation C1. 

(3) Numerical simulations of the upper panel of Figure 3a in the main manuscript adopt the coupling 

grating of Figure S4b. The frequency of the incident light is f =20 THz. Re(pc) = 1.12 × 107 m-1 is 

required to maintain the structure of the coupling grating, so the chemical potential of graphene needs 

to be electrically tuned to 0.89 eV according to equation C1. 

(4) Numerical simulations of Figure 2f in the main manuscript adopt the coupling grating of Figure 

S4c. The frequency of the incident light is f =15 THz, and the chemical potential of graphene is μc = 

0.5 eV. Re(pc) = 1.12 × 107 m-1 from equation C1, so Λc is designed to be 561 nm. In addition, x0 and 

w0 are 3 μm and 1.5 μm respectively. 
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(5) Numerical simulations of Figure 4c in the main manuscript adopt the coupling grating of Figure 

S4d. The frequency of the incident light is f =15 THz, and the chemical potential of graphene is μc = 

0.5 eV. Re(pc) = 1.12 × 107 m-1 from equation C1, so Λc is designed to be 561 nm. In addition, D1 and 

D2 are 1.8 μm and 0.9 μm respectively. 

(6) Numerical simulations of Figure 4a in the main manuscript adopt the coupling grating of Figure 

S4d. The frequency of the incident light is f =10 THz. Re(pc) = 1.12 × 107 m-1 is required to maintain 

the structure of the coupling grating, so the chemical potential of graphene needs to be electrically 

tuned to 0.22 eV according to equation C1. In addition, D1 and D2 are 1.8 μm and 0.45 μm respectively. 

(7) Numerical simulations of Figure 4e in the main manuscript adopt the coupling grating of Figure 

S4d. The frequency of the incident light is f =20 THz. Re(pc) = 1.12 × 107 m-1 is required to maintain 

the structure of the coupling grating, so the chemical potential of graphene needs to be electrically 

tuned to 0.89 eV according to equation C1. In addition, D1 and D2 are 1.8 μm and 1.35 μm respectively. 

 

Next, we calculate the effect of the unit cell number (N) of the coupling grating on the coupling 

efficiency (η), defined as η = PAGPP/Pin. Here, Pin and PAGPP represent the power of the incident light 

and the power of the AGPP mode, respectively, as shown in Figure S5a. The coupling efficiency as a 

function of the unit cell number is shown in Figure S5b. The results show that the reduced number of 

unit cells leads to slightly decreased coupling efficiency for 20 < N <50. 

 

Figure S5. (a) Side view of the coupling grating with the GIWAL. (b) The coupling efficiency as a 

function of the unit cell number of the coupling grating. The frequency of the incident light is f = 20 

THz. 

 

 

 

Section 4: Hybridization between the AGPPs and phonons of the SiO2 grating 

In order to directly account for the hybridization between the AGPPs and phonons of the SiO2 
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grating in the theoretical model proposed in Section 1 of the Supplementary information, the most 

straightforward manner is to replace the constant permittivity of the SiO2 grating (ε21 = 2.25) with a 

generalized, frequency-dependent complex dielectric function ε21(ω):[30] 
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where the high-frequency permittivity is ε∞ = 2.4, the frequency of j-th phonon is ωj = {448.3, 792.2, 

1128.8} cm-1, the oscillator strength of j-th phonon is sj = {0.7514, 0.1503, 0.6011}, and the scattering 

rate of j-th phonon is Γj = {26.7, 42.4, 42.4} cm-1. Within the frequency band of interest, the SiO2 

exhibits a phonon resonance characterized by a Lorentz oscillation, as shown in Figure S6a. 

 

Figure S6. (a) Dependences of the real part (blue) and the imaginary part (red) of the complex 

dielectric function ε21(ω) on the operating frequency. (b) Dependences of the real part of the 

propagation constant along the z-direction in a unit cell of the GIWAL on the operating frequency for 

the original pure AGPPs (blue, ε21 is 2.25) and the hybrid plasmon-phonon mode (red, ε21 is ε21(ω)). 

The solid lines and circles represent the analytical results and the numerical simulations, respectively, 

which are highly consistent. 

 

By solving equations A4 and A9 step by step, for a unit cell of the GIWAL (with a = 75 nm), the 

dispersion curves of the original pure AGPPs and the hybrid plasmon-phonon mode are plotted in 

Figure S6b. When the operating frequency is far away from the phonon frequency (ω1 = 448.3 cm-1 or 

f = 13.44 THz), the proportion of the AGPPs in the hybrid plasmon-phonon mode increases gradually, 

because the dispersion curve of the hybrid plasmon-phonon mode is close to that of the AGPPs. 

Conversely, when the operating frequency is close to the phonon frequency, the proportion of phonons 

in the hybrid plasmon-phonon mode increases gradually. Furthermore, since we obtain the complex 

propagation constant by inputting the real frequency into the equations A4 and A9, the hybrid plasmon-
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phonon mode exhibits anomalous dispersion in the region from point A to point B. This manifestation 

accompanied by an anti-crossing behavior is the hallmark of the mode hybridization. 

 

 

 

Section 5: Derivation of the trajectory equation of the light ray in Mikaelian lens 

The fundamental equation used to deal with problems within the framework of geometrical optics 

is the ray equation:[37] 
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Considering only the evolution of light on the y = 0 plane, and assuming that the refractive index n 

is only related to the x-coordinate, that is, n = n(x), the equation E2 becomes: 
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The formula for the z-coordinate in equation E3 is: 

1

dz
n c

ds
 , (E4) 

where the integration constant c1 is related to the incident point and the incident angle of light. For a 

ray of normal incidence at x = x0, c1 can be characterized by the refractive index at x0, i.e., c1 = n(x0). 

Considering (ds)2 = (dx)2 + (dz)2, equation E4 is further written as: 
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2 2
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We are concerned with Mikaelian lens of the refraction index n(x) = n0sech(ξx), so equation E5 

becomes: 
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 
   2 2

0

cosh

sinh sinh

x
dz dx

x x



 



. (E6) 

Direct integration of equation E6 yields: 

   
   2 2 2

0

sinh
tan

sinh sinh

x
z c

x x




 
 


, (E7) 

where the integration constant c2 can then be determined by the incident point. Since 

   
 

2
2 2

2

sin
tan

1 sin

z c
z c

z c







 

 
, (E8) 

equation E7 translates to: 

     2 0sinh sin sinhx z c x    . (E9) 

Substituting the incident point of the ray, (x, z) = (x0, 0), into equation E9 determines c2 to be π/2. So 

the trajectory equation of the light ray on the y = 0 plane in Mikaelian lens is: 

   1
0

1
sinh sin sinh

2
x z z x

 


        
. (E10) 

 

 

 

Section 6: The complete structure of the GIWAL with 61 unit cells 

 

Figure S7. The cross-section of the complete structure of the GIWAL with 61 unit cells. In order to 

make the unit cell details clearer, we only show the central part of the GIWAL in Figures 1a and 1b of 

the manuscript, as shown by the area enclosed by the black dotted box. To achieve achromatic on-chip 

focusing of the AGPPs, the refractive index profile of the GIWAL needs to be symmetric, so the -i-th 

cell needs to be the same as the i-th cell (correspondingly, the width of their dielectric strips is the 

same). 
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z
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Section 7: Comparison for the precise and stepped GIWALs under different unit cell numbers 

 

Figure S8. The normalized electric field |E|2 of the AGPPs traveling along the z-axis on the y = 0 plane 

in the stepped (a-e) and precise (f-j) GIWALs for the unit cell number of 61 (a, f), 51 (b, g), 41 (c, h), 

31 (d, i), and 21 (e, j), respectively. The frequency of the incident light is f = 15 THz and the focal 

length of the on-chip focusing is fL = 10 μm. It is worth noting that different unit cell numbers have no 

essential effect on the propagation distance of the AGPP mode. However, an increase in the number of 

unit cells results in a smaller focal depth and focal point and higher focusing efficiency. In addition, 

when the number of unit cells increases to 61, the focusing performance remains basically unchanged, 

so we use 61 unit cells here. 

 

 

 

Section 8: Effects of inherent losses of the AGPPs 

 

Figure S9. The normalized electric field |E|2 of the AGPPs traveling along the z-axis on the y = 0 plane 

in the stepped GIWAL for the incident light coupled with an extended grating (a) or a local grating (b). 

These numerical simulations do not include the inherent losses of the AGPPs. The frequency of the 

incident light is f = 15 THz and the focal length of the on-chip focusing is fL = 10 μm. 
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Section 9: Propagation properties of TE modes supported by graded index waveguides 

Figure S10a shows the cross-section of the waveguide with a graded refractive index of n(x) = 

n0sech(ξx). The electric field of TE modes traveling along the z-direction lies on the y-axis and can be 

written as: 

  ( ), , , ( ) i t z
Y yE x y z t E x e    . (I1) 

Substituting equation I1 into Maxwell’s equations, the wave equation satisfied by Ey(x) can be solved 

as: 
2

2 2 2
02

( )
( ) ( ) 0y

y

d E x
k n x E x

dx
     . (I2) 

 

Figure S10. (a) The cross-section of the waveguide with a graded refractive index of n(x) = n0sech(ξx). 

(b) Propagation constants from equation I9 (red squares) and numerical simulations (green circles), 

respectively. (c) The normalized electric field Ey(x) on the x-axis for the 0th (red), 1st (green), and 2nd 

(blue) order waveguide modes. The white curve on the corresponding curve is the result of the 

numerical simulation. (d-f) The normalized electric field Ey(x) on the cross-section of the waveguide 

for the 0th (d), 1st (e), and 2nd (f) order waveguide modes. n0 = 40.186, ξ = π/20 μm-1, and the 

frequency of the incident light is f = 15 THz. 

 

Substitute n(x) = n0sech(ξx) into equation I2 and let 

( ) ( )sech ( )s
yE x W x x , (I3) 

where s is an undetermined constant and its function is to make the equation satisfied by W(x) have 

the most concise form, then equation I2 can be transformed into: 
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2 2 2 22
2 2 2 2 20 0 0 0

2 2 2

( ) ( )
2 tanh( ) tanh ( ) ( )

0.

k n k nd W x dW x
s x s s x s W x

dx dx
     

 
    

          
    



 (I4) 

In order to make equation I4 have the most concise form, we can set s2 + s – k0
2n0

2/ξ2 = 0, that is, 

2 2
0 0

2

4
1 1

2

k n

s


 
 . 

(I5) 

Therefore, equation I4 simplifies to: 
2

2 2 2
2

( ) ( )
2 tanh( ) ( ) 0.

d W x dW x
s x s W x

dx dx
          (I6) 

Now, introducing the variable 
2sinh ( )x   , (I7) 

the equation I6 can be transformed into: 

 
2

3 1 2 1 22

( ) ( )
(1 ) ( 1) ( ) 0

d W dW
S S S S S W

d d

    
 

       , (I8) 

where S1 = (ρ – 2s)/2, S2 = –ρ/2, S3 = 1/2, and (s – ρ)2 = β2/ξ2, that is, 

2 2 2
0 0

1 1

4 2
k n        

 
, (I9) 

of which ρ = 0, 1, 2, … is the mode order. Equation I8 is the standard form of Gaussian hypergeometric 

differential equation whose solution is Gaussian hypergeometric function: 

3

2 1 1 2 3

1
2 1 1 3 2 3 3

F ( , , , ) for 0,2,4,...
( )=

F ( 1, 1,2 , ) for 1,3,5,...S

S S S
W

S S S S S

 


  




     
. (I10) 

Now, combining equations I3, I7, and I10, the normalized electric field Ey(x) can be obtained as: 

( ) ( )yE x AQ x , (I11) 

where 

 
2

2 1 1 2 3

2
2 1 1 3 2 3 3

F , , , sinh ( ) sech ( ) for 0,2,4,...

F 1, 1,2 , sinh ( ) sinh( ) sech ( )
=

for 1,3,5,...

s

s

S S S x x

S S S S S
Q x

x x x

  

   

     


         
, (I12) 

and the normalization constant A is calculated by using 
2 22( ) ( ) 1yE x dx A Q x dx

 

 
   , (I13) 

that is: 
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1/2

2

1

( )
A

Q x dx




 
    
 

. (I14) 

Figure S10b presents the propagation constants from equation I9 and numerical simulations, which 

are in good agreement. Figure S10c presents the normalized electric field from equation I11 and the 

numerical simulation, which is also highly consistent. Figures S10d-S10f present the normalized 

electric field distributions of the first three-order TE modes on the cross-section. 

 

 

 

Section 10: The distributions of |E|2 on the line of y = 0 

 

Figure S11. The distributions of the normalized electric field |E|2 on the line of y = 0 for the 0th (a), 

1st (b), 2nd (c), and 9th (d) order waveguide modes. The red and green curves correspond to the 

simulated stepped GIWAL and the theoretical Mikaelian lens, respectively. The background picture 

represents the normalized electric field |E|2 of the Mikaelian lens on the cross-section. 
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Section 11: Beam evolution in the waveguide 

We only need to study the component of the electric field along the y-axis on the y = 0 plane in the 

waveguide. All eigenmodes Eyρ(x, z) supported by the waveguide are orthonormal, i.e., 

*
' '

0 ( ')
( , ) ( , )

1 ( ')y yE x z E x z dx  

 


 





    

 , (K1) 

so they can be treated as basic unit vectors to build a generalized coordinate system. Thus, in this 

generalized coordinate system, an arbitrary field distribution Ey(x, z) in the waveguide can be expressed 

as a linear superposition of these eigenmodes: 

0

( , ) ( , )y yE x z c E x z 






 , (K2) 

where cρ is the expansion coefficient of the ρ-th order eigenmode, and the solution process is as follows. 

According to equation K2, the initial incident field Ey(x, 0) at z = 0 in this waveguide can be 

expanded as: 

0

( ,0) ( ,0)y yE x c E x 






 . (K3) 

Perform further math on equation K3: 

* *
' '

0

*
'

0

' '
0

( ,0) ( ,0) ( ,0) ( ,0)

( ,0) ( ,0)

= .

y y y y

y y

E x E x dx E x c E x dx

c E x E x dx

c c

   


  


  




 

 


 








 
   

 

 



 

 



 (K4) 

Replacing the subscript ρ’ in equation K4 with ρ, we get: 

= ( ,0) ( ,0)y yc E x E x dx 

 

 . (K5) 

These analyses show that the field distribution in the waveguide depends on both the eigenmodes 

Eyρ(x, z) and the initial incident field Ey(x, 0). It can therefore be concluded that the field distribution 

in the waveguide originates from the evolution of the incident field. 
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Section 12: Self-focusing and self-collimation of Gaussian beams in the GIWAL 

 

Figure S12. The normalized electric field |E|2 of the AGPPs traveling along the z-axis on the y = 0 

plane for the Gaussian beam of x0 = 0 μm and w0 = 3 μm (a-c) and x0 = 0 μm and w0 = 1.45 μm (d-f). 

(a-c) and (d-f) reveal the self-focusing and self-collimation of the Gaussian beam, respectively. (a, d), 

(b, e), and (c, f) represent numerical simulations with losses, analytical results without losses, and 

analytical results with losses, respectively. The frequency of the incident light is f = 15 THz and the 

focal length of the on-chip focusing is fL = 10 μm. 

 

 

 

Section 13: Analytical prediction for the spatial inverter based on the achromatic GIWAL 

The electric field Ey(x, 0) of the incident digital optical signal is: 

1 1
1 1 21,

( ,0) 2 2
0, else

y

D D
D x D D

E x
         


, (M1) 

where D1 and D2 are the oscillation period of the digital optical signal and the width with an intensity 

of 1, respectively. α = –2, –1, 0, 1, and 2. Simultaneous equation M1 and equations 2-7 in the main 

manuscript can obtain the evolution of the digital optical signal on the y = 0 plane in the GIWAL, as 

shown in Figure S13. 
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Figure S13. The normalized electric field |E|2 of the AGPPs propagating along the z-direction on the 

y = 0 plane in the GIWAL for incident frequencies of 10 THz (a, D1 = 1.8 μm and D2 = 0.45 μm), 15 

THz (b, D1 = 1.8 μm and D2 = 0.9 μm), and 20 THz (c, D1 = 1.8 μm and D2 = 1.35 μm), respectively. 

 

 

 

 


